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Abst ract

Finding prevalent patterns in large amount of data has been one of the major problems in the area of data mining.

Particularly, the problem of finding frequent itemset or sequential patterns in very large databases has been studied

extensively over the years, and a variety of algorithms have been developed for each problem. The key feature in most

of these algorithms is that they use a constant support constraint to control the inherently exponential complexity of

these two problems. In general, patterns that contain only a few items will tend to be interesting if they have a

high support, whereas long patterns can still be interesting even if their support is relatively small. Ideally, we want

to find all the frequent patterns whose support decreases as a function of their length without having to find many

uninteresting infrequent short patterns. Developing such algorithms is particularly challenging because the downward

closure property of the constant support constraint cannot be used to prune short infrequent patterns.

In this paper we present two algorithms, LPMiner and SLPMiner. Given a length-decreasing support constraint,

LPMiner finds all the frequent itemset patterns from an itemset database, and SLPMiner finds all the frequent sequen-

tial patterns from a sequential database. Each of these two algorithms combines a well-studied efficient algorithm for

constant-support-based pattern discovery with three effective database pruning methods that dramatically reduce the

runtime. Our experimental evaluations show that both LPMiner and SLPMiner, by effectively exploiting the length-

decreasing support constraint, are up to two orders of magnitude faster, and their runtime increases gradually as the

average length of the input patterns increases.

Keywords: frequent pattern discovery, data-mining, association rules, scalability
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1 Intr oduction

Finding prevalent patterns in a large amount of data is one of the important problems in the area of data mining. The

problem of finding itemset patterns from large itemset databases has been studied extensively during the last nine years

and has led to the development of a variety of algorithms [3, 1, 8, 27]. The itemset model regards a set of objects (or

items) as a pattern. By generalizing the itemset model, the sequence model was introduced, and various algorithms

have been developed [21, 25, 18]. The sequence model introduces ordering among a set of itemsets and regards those

ordered itemsets as a pattern. Each of these two types of patterns can be effectively used to find association rules or

extract prevalent patterns from itemset or sequential databases in various domains and applications.

The key feature in most of these algorithms is that they control the inherently exponential complexity of the prob-

lem by finding only the patterns that occur in a sufficiently large fraction of the input itemsets or sequences, called

the support. A limitation of this paradigm for generating frequent patterns is that it uses a constant support value,

irrespective of the length of the discovered patterns. In general, patterns that contain only a few items will tend to be

interesting if they have a high support, whereas long patterns can still be interesting even if their support is relatively

small. Unfortunately, if constant-support-based frequent pattern discovery algorithms are used to find some of the

longer but infrequent patterns, they will end up generating an exponentially large number of short patterns. Ideally, we

would like to find frequent patterns whose support decreases as a function of their length without having to find many

uninteresting infrequent short patterns.

In this paper, we introduce the problem of finding frequent patterns whose support satisfies a non-increasing func-

tion of their length, for both itemset and sequential patterns. A pattern is frequent if and only if its support is greater

than or equal to the minimum support value determined by the length of the pattern. We refer to such a support con-

straint as the length-decreasing support constraint. Unfortunately, the downward closure property does not hold for

the problem of finding the complete set of frequent patterns that satisfy a length-decreasing support constraint as a

pattern can be frequent even if its sub-patterns are infrequent. To overcome this problem, we identified a new property

that an infrequent pattern must have in order to grow to longer frequent patterns under a length-decreasing support

constraint. This property, called the smallestvalid extension or SVE for short allows us to prune large portions of the

input database that are irrelevant for finding frequent patterns.

We evaluate the effectiveness of the SVE property, by developing two algorithms, LPMiner and SLPMiner. Given a

length-decreasing support constraint, LPMiner finds all the frequent itemsets from an itemset database, and SLPMiner

finds all the frequent sequential patterns from a sequential database. We conducted a series of experiments on these

algorithms to evaluate the effectiveness of pruning methods that we incorporated into these algorithms to exploit the

length-decreasing support constraint. Both of LPMiner and SLPMiner achieve up to two orders of magnitude of

speedup by effectively exploiting the SVE property, and their runtime increases gradually as the average length of the

input itemsets or sequences (and the discovered patterns) increases.

The rest of this paper is organized as follows. Section 2 provides some background definitions and introduces the

notation that we will be using through-out the paper. Section 3 provides an overview of related research in this area.

Section 4 introduces the notion of the length-decreasing support constraint and discusses the smallest valid extension

property that can be used to potentially prune the search space. Section 5 focuses on the problem of finding frequent

itemsets that satisfy a length-decreasing support constraint and describes the LPMiner algorithm that we developed

for solving this problem. Similarly, Section 6 focuses on the corresponding problem for sequential patterns and

describes the SLPMiner algorithm that finds frequent sequential patterns. The experimental evaluations of LPMiner

and SLPMiner are shown in Section 7. Finally, Section 8 provides some concluding remarks and future research

directions.
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2 Definitions and Notation

We will use the itemset model [3] and sequence model [21], both of which were introduced by Agrawal and Srikant.

These two models are defined as follows. Let I = {i1, i2, . . . , in} be the set of all items. An itemset is a subset of I .

A sequences = 〈t1, t2, . . . , tl 〉 is an ordered list of itemsets, where t j ⊆ I for 1 ≤ j ≤ l . A sequential database D is

a set of sequences. The length of a sequence s is defined to be the number of items in s and denoted by |s|. Similarly,

the length of an itemset t is defined to be the number of items in t and denoted by |t|; thus |s| = |t| if s consists of only

one itemset t . Given a sequential database D, |D| denotes the number of sequences in D. We assume that the items

in I can be arranged in a lexicographic order, and we will use consecutive integers starting from one to represent the

items according to that ordering.

Sequence s = 〈t1, t2, . . . , tl 〉 is called a sub-sequence of sequence s′ = 〈t ′1, t ′2, . . . , t ′m〉 (l ≤ m) if there exist l

integers i1, i2, . . . i l such that 1 ≤ i1 < i2 < . . . < i l ≤ m and t j ⊆ t ′i j
( j = 1, 2, . . . , l ). If s is a sub-sequence of

s′, then we write s ⊆ s′ and say sequence s′ supports s. In our algorithms, we often consider a sequential database

D′ that is derived from the input sequential database D by eliminating certain sequences or certain items in D. The

support of a sequence s in a sequential database D′ derived from the input sequential database D is defined to be

|D′
s|/|D| and denoted by σD′(s), where D′

s = {si |s ⊆ si ∧ si ∈ D′}. If a sequence s has only one itemset t , we use

σD′(t) = σD′(〈t〉). Furthermore, if the itemset t has only one item i , we use σD′(i ) = σD′(〈t〉). From the definition,

it always holds that 0 ≤ σD′(s) ≤ 1 for any sequence s ∈ D′ and any sequential database D′ derived from the input

sequential database D (including the case in which D′ = D). We use the term sequential pattern to refer to a sequence

when we want to emphasize that the sequence is supported by many sequences in a sequential database.

We will use the traditional method for writing out sequences, in which each itemset is represented as a list of items

ordered according to their lexicographical order and enclosed within matched parentheses (), and the sequence of these

itemsets is written one-after-the-other enclosed within matched angled parentheses 〈〉.

To illustrate the above definitions consider the set of items I = {1, 2, 3}. This set can generate seven possible

itemsets and each of them is represented as (1),(2),(3),(1, 2), (1, 3),(2, 3),(1, 2, 3). Let t1 = (1, 2), t2 = (1, 2, 3), and

t3 = (3), be three itemsets of sizes two, three, and one, respectively. Sequence s = 〈t1, t2, t3〉 = 〈(1, 2), (1, 2, 3), (3)〉

has three itemsets and has length |s| = 2 + 3 + 1 = 6. Sequence s′ = 〈(1, 3), (1, 2, 3), (1, 2, 3), (2), (2, 3)〉 supports

s, or in other words s is a sub-sequence of s′.

If every sequence in a sequential database D has exactly one itemset, we refer to such a sequential database as

an itemset database and regard each sequence s = 〈t〉, where t is an itemset, as just an itemset t . If an itemset is

supported by many itemsets in an itemset database, we call it itemset pattern. Since itemset databases are special

case of sequential databases, any frequent sequential pattern mining algorithm is applicable to itemset databases for

frequent itemset pattern mining. There exist, however, many algorithms that are designed specific to itemset pattern

mining and in general much more efficient than sequential pattern mining algorithms. When we discuss both sequential

patterns and itemset patterns, we use the term pattern to refer to both of them.

The problem of finding frequent sequential patterns given a constant minimum support constraint [21] is formally

defined as follows:

Definition 1 (Sequence Mining with Constant Suppor t) Givena sequential databaseD anda minimumsup-

port σ (0 ≤ σ ≤ 1), find all sequenceseach of which is supported by at least⌈σ |D|⌉ sequencesin D.

Such sub-sequences are called frequent sequential patterns. If every sequence consists of exactly one itemset, the

problem of finding frequent sequential patterns degenerates to the problem of finding frequent itemset patterns in an

itemset database [3] that is defined as follows:

Definition 2 (Itemset Mining with Constant Suppor t) Givenan itemset databaseD anda minimumsupport

σ (0 ≤ σ ≤ 1), find all itemsets each of which is supported by at least⌈σ |D|⌉ itemsets in D.
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3 Related Research

Efficient algorithms for finding frequent itemsets or sequences in very large itemset or sequence databases have been

one of the key success stories of data mining research. One of the early computationally efficient algorithm was

Apriori [3], which finds frequent itemsets of length l based on previously generated (l − 1)-length frequent itemsets.

The GSP [20] algorithm extended the Apriori-like level-wise mining method to find frequent patterns in sequential

databases. The basic level-wise algorithm has been extended in a number of different ways leading to more efficient

algorithms such as DHP [14, 13], Partition [19], SEAR and Spear [12], and DIC [5]. An entirely different approach

for finding frequent itemsets and sequences are the equivalence class-based algorithms Eclat [26] and SPADE [24]

that break the large search space of frequent patterns into small and independent chunks and use a vertical database

format that allows them to determine the frequency by computing set intersections. More recently, a set of database-

projection-based methods has been developed that significantly reduce the complexity of finding frequent patterns

[1, 8, 7, 18]. The key idea behind these methods is to find the patterns by growing them one item at a time, and

simultaneously partitioning (i.e., projecting) the original database into pattern-specific sub-databases (which in gen-

eral overlap). The process of pattern-growth and database-projection is repeated recursively until all frequent patterns

are discovered. Prototypical examples of such algorithms are the tree-projection algorithm [1] that constructs a lex-

icographical tree and projects a large database into a set of reduced, item-based sub-databases based on the frequent

patterns mined so far. The original algorithm was developed for finding non-sequential patterns, but it has been ex-

tended to find sequential patterns as well [7]. Another similar algorithm is the FP-growth algorithm [8] that combines

projection with the use of the FP-tree data structure to compactly store in memory the itemsets of the original database.

The basic ideas in this algorithm were recently used to develop a similar algorithm for finding sequential patterns [18].

The problem of finding frequent patterns has been extended to that of finding frequent maximal patterns [4, 10, 2,

27] and finding frequent closed patterns [15, 23, 17]. Both of these problem formulations can be used to reduce the

number of patterns that gets discovered and help in finding long patterns present in the data. However, both of these

problem formulations can still generate a very large number of short infrequent itemsets if these itemsets are maximal

or closed.

Even though to our knowledge no work has been published for finding frequent itemsets in which the support de-

creases as a function of the length of the itemset, there has been some work in developing itemset discovery algorithms

that use multiple support constraints. Liu et al [11] presented an algorithm in which each item has its own minimum

item support (or MIS). The minimum support of an itemset is the lowest MIS among those items in the itemset. By

sorting items in ascending order of their MIS values, the minimum support of the itemset never decreases as the length

of itemset grows, making the support of itemsets downward closed. Thus an Apriori-based algorithm can be applied.

Wang etal [22] allow a set of more general support constraints. In particular, they associate a support constraint for

each one of the itemsets. By introducing a new function called Pminsup that has an “Apriori-like” property, they

proposed an Apriori-based algorithm for finding the frequent itemsets. It is possible to represent a length-decreasing

support constraint by using the formulation in [22]. However, the “pushed” minimum support of each itemset is forced

to be equal to the support value corresponding to the longest itemset. Thus, it cannot prune the search space. Cohen

et al [6] adopt a different approach in that they do not use any support constraint. Instead, they search for similar

itemsets using probabilistic algorithms, that do not guarantee that all frequent itemsets can be found.

In [9] a FP-tree based algorithm called TFP was introduced for finding top-k frequent closed patterns of length no

less than a given value. TFP does not input a predefined minimum support. Instead, starting from 0, the minimum

support is raised based on candidates top-k frequent closed patterns found so far. Similar to LPMiner, TFP is effective

for finding long frequent itemsets. Furthermore, TFP allows users to input the number of patterns to be discovered

rather than less intuitive minimum support. One drawback with TFP is that any patterns shorter than a given minimum

length are never discovered, which might not be appropriate for some applications.

Finally, a good discussion of the different type of constraints that have been used in the context of pattern discovery
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Figure 1: Typical length-decreasing support constraint functions.

is presented in [16]. In particular, the authors classify the various constraints into four categories, namely, anti-

monotone, monotone, succinct, and convertible. For these constraints it has been shown that efficient mining can be

achieved by pushing the constraints into mining process. However, the length-decreasing support constraint does not

fall into any of these four categories.

4 Pattern Mining with Length-Decreasing Suppor t Constraint

A limitation of the above paradigm for generating frequent patterns is that it uses a constant value of support, irre-

spective of the length of the discovered patterns. In general, patterns that contain only a few items will tend to be

interesting if they have a high support, whereas long patterns can still be interesting even if their support is relatively

small. Unfortunately, if constant-support-based frequent pattern discovery algorithms are used to find some of the

longer but infrequent patterns, they will end up generating an exponentially large number of short patterns.

In order to solve this problem, we introduce the idea of length-decreasing support constraint that helps us to find

long patterns with low support as well as short patterns with high support. A length-decreasing support constraint is

given as a non-increasing function f (l ) of the pattern length l . The idea of introducing this kind of support constraint

is that by using a support function that decreases as the length of the pattern increases, we may be able to find long

patterns that may be of interest without generating an exponentially large number of shorter patterns. Formally, the

length-decreasing support constraint is defined as follows:

Definition 3 (Length-Decr easing Suppor t Constr aint) Givenanitemsetor sequential databaseD anda func-

tion f (l ) that satisfies1 ≥ f (l ) ≥ f (l + 1) ≥ 0 for any positive integer l , a pattern s is frequent if and only if

σD(s) ≥ f (|s|).

Figure 1 shows some typical length-decreasing support constraints functions. For example, Figure 1(a) shows a support

constraint function that decreases linearly from 0.001 to 0.0001 as the length of the pattern increases from one to ten,

and then remains constant at 0.0001 for patterns that are longer than ten items. Similarly, Figures 1(b) and 1(c) show

a stair-case-type function and an exponential decreasing function, respectively. Given a length-decreasing support

constraint f (l ), we can define the inverse function of f (l ) as follows:

Definition 4 (The Inverse Function of Length-Decr easing Suppor t Constr aint) Givena length-decreasing

supportconstraint f (l ), its inversefunction is defined as f −1(σ ) = min({l | f (l ) ≤ σ }) for 0 ≤ σ ≤ 1.

Essentially, for a given support value σ , f −1(σ ) is the minimum length l that a pattern must have in order to satisfy

the support constraint (i.e., be considered frequent).

Formally, the problems of finding frequent itemsets and sequences that satisfy a length-decreasing support con-

straint are defined as follows:

Definition 5 (Itemset Mining with Length-Decr easing Suppor t) GivenanitemsetdatabaseD anda length-

decreasing supportconstraint f (l ), find all itemsets t such thatσD(t) ≥ f (|t |).
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Definition 6 (Sequence Mining with Length-Decr easing Suppor t) Given a sequential databaseD and a

length-decreasing supportconstraint f (l ), find all sequential patterns s such thatσD(s) ≥ f (|s|).

4.1 Smallest Valid Extension Property

The key feature of existing algorithms for finding frequently occurring patterns that satisfy a constant minimum support

constraint is that they control the inherently exponential complexity of the problem by using the downward closure

property [3, 21]. This property states that in order for a pattern of length l to be frequent, all of its sub-patterns (i.e.,

sub-itemsets or sub-sequences) must be frequent as well. As a result, once these algorithms determine that a pattern s

of length l is infrequent, then any longer pattern s′ that includes s cannot be frequent, and thus eliminate such patterns

from further consideration.

Unfortunately, the downward closure property does not hold for the problem of finding the complete set of frequent

patterns that satisfy a length-decreasing support constraint. This is because under this types of constraints, a pattern

can be frequent even if its sub-patterns are infrequent since the minimum support value decreases as the length of a

pattern increases. The only way that existing, constant-support, frequent pattern discovery algorithms can be used to

find the desired set of patterns is to set σ = minl≥1 f (l ) (i.e., the smallest possible support value allowed by the length-

decreasing support constraint) and discard any discovered patterns that do not satisfy the length-decreasing support

constraint. However, this approach does not reduce the number of infrequent patterns that is being discovered, and as

our experiments will show, requires a large amount of time. Thus, the fact that the downward closure property does

not hold, makes the task of developing computationally efficient algorithms for discovering such patterns particularly

challenging.

A key property regarding patterns whose support decreases as a function of their length is encapsulated in the

following lemma.

Lemma 1 (Smallest Valid Extension) Givenan itemset or sequential database D and an itemset or sequence

pattern s ∈ D, if s is currently infrequent (σD(s) < f (|s|)), then f −1(σD(s)) is the minimum length that a pattern

s′ ⊃ s must havebefore it canpotentially becomefrequent.

The best way to understand (and prove) this lemma is to look at Figure 2 that graphically illustrates the relation

between s and s′ and their respective lengths. Given a pattern s, the length of s′ (i.e., f −1(σD(s))) corresponds to the

x-coordinate of the point at which a line parallel to the x-axis at y = σD(s) intersects the length-decreasing support

curve. This relation between the lengths of s and s′ essentially assumes that pattern s can be extended to form pattern

s′ in a way such that every database itemset or sequence that supported s (i.e., σD(s)) will also support s′. Note that

σD(s) represents an upper-bound on the support of s′ because every database itemset or sequence that supports s′ will

also support s, but there may be some database itemsets or sequences that support s but not s′. We will refer to this

relation between the current length of an infrequent pattern s and the minimum length that a superset pattern s′ must

have before it can potentially become frequent as the smallestvalid extension property or SVE property for short.

The SVE property is important as it allow us to prune both the space of candidate patterns as well as the database

that can potentially support any supersets of a particular pattern. For example, if s is infrequent, then from the SVE

property we know that any superset pattern s′ whose length is smaller than f −1(σD(s)) will also be infrequent. Thus,

we can dramatically reduce the set of patterns that we need to consider. Similarly, if s is infrequent, then because

f −1(σD(s)) is the minimum length of a potential frequent pattern derived from s, any database itemset or sequence

that supported s but whose length is smaller than f −1(σD(s)) does not need to be considered as it can never contribute

to a frequent pattern that is a superset of s. Thus, we can dramatically reduce the size of the database in which we

search for frequent patterns.
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5 Itemset Mining with Length- Decreasing Suppor t Constraint

We developed an algorithm called LPMiner that finds all frequent itemsets that satisfy a given length-decreasing

support constraint function. The underlying structure of LPMiner’s frequent pattern discovery algorithm follows the

general framework of the recently introduced FP-growth algorithm [8]. However, LPMiner extends FP-growth by

incorporating three different and complementary pruning methods that rely on the SVE property to substantially prune

the database and the space of patterns that are being considered. In the rest of this section we briefly review the key

elements of the FP-growth algorithm and describe the pruning methods that we developed.

5.1 FP-growth Algorithm

The key idea behind the FP-growth algorithm [8] is to use a data structure called FP-tree to compactly store the

database so that it can fit in the main memory. As a result, any subsequent operations that are required to find the

frequent itemset patterns can be performed quickly, without accessing the disks.

The FP-tree itself can be built efficiently by requiring only two passes over the input database. Figure 3 shows

how the FP-tree generation algorithm works given an input database D that has five itemsets (t1, t2, . . . , t5) with items

I = {1, 2, 3, 4, 5, 6}, and a constant minimum support constraint of σ = 0.4. First, it scans D to find the number

of times that each item occurs in the various itemsets and uses this information to build the ItemSupport Table. This

table consists of a set of (item-ID, support) pairs. For example, item 1 occurs twice in the itemset database (in itemsets

t1 and t5); therefore its support is 2/5 = 0.4. Then, any items whose support is smaller than the minimum support are

eliminated (e.g., item 6 in our example), and the remaining items are sorted in non-increasing order according to their

support. The resulting ordering is stored in an array called the “Node-Link” header table or NL for short. Finally, the

FP-tree is generated by reading the itemsets from the database and inserting them one-by-one in the tree. Initially the

FP-tree has only a root node called the null node. Each (non-root) node of the FP-tree contains three fields. The first

field corresponds to the item-ID of the item for which this node was created, the second field represents a counter that

is set to one the moment a node is created, and the third field is used to form a link-list of all the nodes corresponding

to the same item. Note that the FP-tree of Figure 3 uses a two-element array to represent each node in which the first

element corresponds to the item-ID and the second element corresponds to the counter.

The actual process of building the FP-tree is better explained by going through the steps involved in inserting some

of the transactions of Figure 3. When the first itemset t1 = (1, 2, 3, 4, 5) is read from the disk, its items are first

re-ordered to match the ordering in the NL-table (i.e., t ′1 = (2, 3, 5, 1, 4)) and are then inserted into the tree according

to that order. That is, the algorithm creates nodes that represent items 2, 3, 5, 1, and 4 along a path from the root to

the node corresponding to item 4. Next, when the second itemset (t2 = (2, 5)) is read, its items re-ordered according

to the NL-table (t ′2 = (2, 5)) and is inserted in the FP-tree, a node representing item 2 is not generated; instead, the

7
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node already generated is reused. In this case, because the root node has a child that represents item 2, the count of

the node is incremented by one. As for item 5, since there is no child node representing item 5 under the current node,

a new node with item-name 5 is generated as a child of the current node. Similar processes are repeated until all the

sorted itemsets are inserted into the FP-tree. Note that as the itemsets are being inserted in the FP-tree, if they contain

any items that have already been eliminated due to the support constraint (and are not in the NL-table), they are also

eliminated from the itemsets. Also, in addition to the tree-structure itself, the FP-tree data-structure also maintains

for each item a link-list that connects all the nodes of the tree that store the same item. The header pointer of these

link-lists is the NL array as illustrated in Figure 3.

Once an FP-tree is generated from the input database D, FP-growth mines frequent patterns by only accessing this

FP-tree. The algorithm generates patterns from shorter to longer ones by adding items one-by-one to those patterns

already generated. It divides mining the FP-tree into mining smaller FP-trees, each of which is based on an item of

the Node-Link header table in Figure 3. To illustrate this process consider the patterns that are generated from item 4.

Initially, the FP-growth algorithm generates a new itemset database called conditionalpattern base. Each itemset in

the conditional pattern base consists of items on the paths from parent nodes whose child nodes have item 4 to the

root node. The conditional pattern base for item 4 is shown in Figure 4. Each itemset in the conditional pattern base

also has its frequency of occurrence corresponding to the counter of the node with item 4 in the original FP-tree. Note

that item 4 itself is a frequent itemset pattern consisting of one item, and in the FP-growth terminology it is called

a conditionalpattern. A conditional pattern base is a set of itemsets each of which includes the conditional pattern.

Then, the algorithm proceeds to generate frequent itemset patterns that include the conditional pattern (4) by using only

its conditional pattern base. For this purpose, a smaller FP-tree is generated based on the conditional pattern (4). This

new FP-tree, called conditionalFP-tree, is generated from the conditional pattern base using the FP-tree generation

algorithm again. If the conditional FP-tree is not a single path tree, the process of mining this conditional FP-tree

is recursively decomposed to that of mining even smaller conditional FP-trees. This is repeated until a conditional

FP-tree with only a single path is obtained. During those recursively repeated processes, all selected items are added

to the conditional pattern. Once a single path conditional FP-tree like the one in Figure 4 is obtained, all possible

combinations of the items along the path are generated and are combined with the conditional pattern. For example,

from those three nodes in the conditional FP-tree in Figure 4, we have 23 = 8 combinations of items 2, 3, and 5: ()
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Figure 4: Conditional FP-tree.

(no item), (2), (3), (5), (2,3), (3,5), (5,2), and (2,3,5). Then we obtain frequent itemset patterns based on conditional

pattern base (4): (4), (4,2), (4,3), (4,5), (4,2,3), (4,3,5), (4,5,2), and (4,2,3,5).

5.2 Pruning Methods of LPMiner

In this subsection, we introduce three pruning methods that use the SVE property to substantially reduce the search

space of frequent itemset patterns and allow LPMiner to efficiently find all itemset patterns that satisfy a length-

decreasing support constraint.

5.2.1 Transact ion Pruning (TP)

The first pruning method is used to eliminate certain itemsets from conditional pattern bases. Recall that, during

frequent itemset pattern generation, the FP-growth algorithm builds a separate FP-tree for all the itemsets that contain

the conditional pattern under consideration. Let p be that conditional pattern. If p is infrequent, we know from the

SVE property that in order for this conditional pattern to grow to something indeed frequent, it must have a length of

at least f −1(σD(p)). Using this requirement, before building the FP-tree corresponding to this conditional pattern,

we can eliminate any itemsets whose length is shorter than f −1(σD(p)) − |p|, as such itemsets cannot contribute to a

valid frequent itemset pattern in which p is part of it. Since itemsets are sometimes called transactions, we will refer

to this as the transaction pruning method or TP for short. This pruning method is formally defined as follows:

Definition 7 (Transaction Pruning) Givena length-decreasing supportconstraint f (l ) and a conditional pat-

tern baseD′ with regard to aconditionalpattern p, anitemsett ∈ D′ canbeprunedfrom D′ if f (|t |+|p|) > σD(p).

We evaluated the complexity of this method in comparison with the complexity of inserting an itemset to a con-

ditional pattern base. There are three parameters that we need to know in order to prune an itemset t : |t|, |p|, and

σD(p). We can calculate |t| and |p| in a constant time since the length of an itemset is in the itemset data structure

of LPMiner. As for σD(p), we know this value when we generated the conditional pattern base for the pattern p.

Evaluating function f takes a constant time because LPMiner has a lookup table that contains all possible (l , f (l ))

pairs. Thus, the complexity of this method is just a constant time per inserting an itemset.

5.2.2 Node Pruning (NP)

The second pruning method is used to eliminate certain nodes from each conditional FP-tree. Let us consider a node v

of the FP-tree. Let I (v) be the item stored at this node, σD′(I (v)) be the support of the item in the conditional pattern

base D′, and h(v) be the height of the longest path from the root through v to a leaf node. From the SVE property we
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know that the node v will contribute to a valid frequent itemset pattern only if

h(v) + |p| ≥ f −1(σD′(I (v))), (1)

where |p| is the length of the conditional pattern of the current conditional FP-tree. Equation (1) is correct because of

the following. Any itemset that goes through node v has a length of up to h(v) + |p|. From the SVE property, such

itemsets must have support at least f (h(v) + |p|) in order to be frequent. Now, if the support of item I (v) is smaller

than f (h(v) + |p|), item I (v) cannot contribute any frequent itemsets that go through node v. Thus, if Equation 1

does not hold, node v can be pruned from the FP-tree. Once node v is pruned, then σD′(I (v)) will decrease as well as

the height of the nodes whose longest path goes through v, possibly allowing further pruning. We will refer to this as

the nodepruning method or NP for short and is formally defined as follows:

Definition 8 (Node Pruning) Givena length-decreasing supportconstraint f (l ), a conditional pattern baseD′

with regard to a conditional pattern p, and the FP-tree T built from D′, a nodev in T can be prunedfrom T if

h(v) + |p| < f −1(σD′(I (v))).

A key observation to make is that both the TP and NP methods can be used together, as each one of them prunes

portions of the FP-tree that the other one does not. In particular, the NP methods can prune a node in a path that is

longer than f −1(σD(p)) − |p|, because the item of that node may have lower support than p. On the other hand, TP

reduces the frequency of some itemsets in the FP-tree by removing entire short itemsets. For example, consider two

itemsets (1, 2, 3, 4) and (1, 2). Let us assume that f −1(σD(p)) − |p| = 4, and each one of the items 1, 2, 3, and 4 has

a support equal to that of p. In this case, NP will not remove any nodes, whereas TP will eliminate the second itemset.

Pract ical Considerat ions In order to perform the node pruning, we need to compute the height of each node

and then traverse each node v to see if it violates Equation 1. If it does, then the node v can be pruned. The height

of all the nodes whose longest path goes through v must be decremented by one, and the support of I (v) needs to be

decremented to take account of the removal of v. Every time we make such changes in the tree, nodes that could not

have been pruned before may now become eligible for pruning. In particular, all the rest of the nodes that have the

same item I (v) needs to be rechecked, as well as, all the nodes whose height was decremented upon the removal of v.

Our initial experiments with such an implementation showed that the cost of performing the pruning was often quite

higher than the saving we achieved when used in conjunction with TP. For this reason we implemented an approximate

but fast version of this method that achieves a comparable degree of pruning.

Our approximate NP algorithm initially sorts the itemsets of the conditional pattern base in decreasing itemset

length, then traverses each itemset in that order, and tries to insert these itemsets in the FP-tree. Let t be one such

itemset. When t is inserted into the FP-tree it may share a prefix with some itemsets already in the FP-tree. However,

as soon as the insertion of t results in a new node being created, we check to see if we can prune it using Equation 1.

In particular, if v is that newly created node, then h(v) = |t|, because the itemsets are inserted into the FP-tree in the

decreasing length order. Thus v can be pruned if

|t| + |p| < f −1(σ (I (v))). (2)

If that can be done, the new node is eliminated and the insertion of t continues to the next item. Now if one of the next

items inserts a new node u, then that one may be pruned using Equation 2. In Equation 2, we use the original length

of the itemset |t|, not the length after the removal of the item previously pruned. The reason is that |t| is the correct

upper bound of h(u), because one of the itemsets inserted later may have a length of at most |t|, the same as the length

of the current itemset, and may increase h(u) to |t| at most.

The above approach is approximate because (i) the elimination of a node affects only the nodes that can be elim-

inated in the subsequent itemsets, not the nodes already in the tree; (ii) we use pessimistic bounds on the height of a
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Figure 5: Binary tree when k = 3.

node (as discussed in the previous paragraph). This approximate approach, however, does not increase the complexity

of generating the conditional FP-tree, beyond the sorting of the itemsets in the conditional pattern base. Since the

length of itemsets falls within a small range, they can be sorted in linear time using bucket sort.

5.2.3 Path Pruning (PP)

Once an FP-tree becomes a single path, the original FP-growth algorithm generates all possible combinations of items

along the path and concatenates each of those combinations with its conditional pattern. If the path contains k items,

there exist a total of 2k such combinations. Using the SVE property, however, we can limit the number of combinations

that we may need to consider.

Let {i1, i2, . . . , ik} be the k items such that σD′(i j ) ≥ σD′(i j +1), where D′ is the conditional pattern base of the

single path FP-tree. One way of generating all possible 2k combinations is to grow them incrementally as follows.

First, we create two sets, one that contains i1, and the other that does not. Next, for each of these sets, we generate

two new sets such that, in each pair of them, one contains i2 and the other does not, leading to four different sets.

By continuing this process a total of k times, we will obtain all possible 2k combinations of items. This approach

essentially builds a binary tree with k levels of edges, in which the leaves correspond to the possible combinations.

One such binary tree for k = 3 is shown in Figure 5.

To see how the SVE property can be used to prune certain subgraphs of this binary tree (and hence combinations to

be explored), consider a particular internal node v of that binary tree. Let p be the current conditional pattern, h(v) be

the height of node v (the root has a height of zero), and β(v) be the number of edges that were one on the path from

the root to v. In other words, β(v) is the number of items that have been included so far in the set. Using the SVE

property we can stop expanding the binary tree under node v if

β(v) + (k − h(v)) + |p| < f −1(σ (Ih(v))).

Essentially, the above formula states that, based on the frequency of the current item, the set must have a sufficiently

large number of items before it can be frequent. If the number of items that were already inserted in the set (β(v)) plus

the number of items that are left for possible insertion (k − h(v)) is not sufficiently large, then no frequent itemsets

can be generated from this branch of the binary tree, and hence it can be pruned. We will refer to this method as path
pruning method or PP for short, and is formally defined as follows:

Definition 9 (Path Pruning) Given k itemson a single-pathconditional FP-tree with regard to a conditional

pattern p anda nodev in the binary treeT representing all the combinationsof thesek items, all the nodesin the

subtreerootedat v canbe prunedfrom T if f (β(v) + (k − h(v)) + |p|) > σ(Ih(v)).

The complexity of applying the path pruning scheme for a particular binary tree is constant because (i) for each
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node v of the tree we can update in constant times its β(v) and h(v) values; (ii) the length of the conditional pattern

(i.e., |p|) is already known as part of the data structure used to store the pattern; and (iii) σ(Ih(v)) can be calculated

using the already computed frequency of v in the current conditional FP-tree.

6 Sequence Mining with Lengt h-Decreasing Suppor t Constraint

To solve the problem of finding frequent sequential patterns that satisfy a length-decreasing support constraint we

developed an algorithm called SLPMiner. Our design goals for SLPMiner were to make it both efficient and at the

same time sufficiently generic so that any conclusions drawn from our experiments can carry through other database-

projection-based sequential pattern mining algorithms [7, 18].

6.1 Sequential Database-Projecti on-based Algorithm

SLPMiner finds frequent sequential patterns using a database-projection-based approach that was derived from the

sequential version [7] of the tree-projection algorithm of Agarwal etal [1] for finding frequent itemsets. This algorithm

[7] shares the same overall structure with the PrefixSpan [18] algorithm that was independently developed at the same

time frame.

Key to this algorithm is the use of a tree to both organize the process of sequential pattern discovery and to represent

the patterns that have been discovered thus far. Each node in the tree represents a frequent sequential pattern. The

relation between the sequential pattern represented at a particular node at level k and that of its parent at level k − 1

is that they share the same k − 1 prefix. That is, the child’s pattern is obtained from that of the parent by adding one

item at the end. For example, if a node represents a pattern 〈(1), (2, 3)〉, its parent node represents 〈(1), (2)〉. The root

node of the tree represents the null sequence with no itemset. From the above definition it is easy to see that given a

particular node corresponding to pattern p, all the patterns represented in the nodes of the subtree rooted at that node

will have p as a prefix. For this reason, we will refer to this tree as the prefix tree.
SLPMiner finds the frequent sequential patterns by growing this tree as follows. It starts from the root node and

expands it to create the children nodes that correspond to the frequent items. Then it recursively visits each child node

in a depth-first order and expands it into children nodes that represent frequent sequential patterns. SLPMiner grows

each pattern in two different ways, namely, itemset extension and sequenceextension. Itemset extension grows a

pattern by adding an item to the last itemset of the pattern, where the added item must be lexicographically larger

than any item in the last itemset of the original pattern. For example, 〈(1), (2)〉 is extended to 〈(1), (2, 3)〉 by itemset

extension, but cannot be extended to 〈(1), (2, 1)〉 or 〈(1), (2, 2)〉. Sequence extension grows a pattern by adding an

item as a new itemset next to the last itemset of the pattern. For example, 〈(1), (2)〉 is extended to 〈(1), (2), (2)〉 by

sequence extension.

Figure 6 shows a sequential database D and its prefix tree that contains all the frequent sequential patterns given

minimum support 0.5. Since D contains a total of four sequences, a pattern is frequent if and only if at least two

sequences in D support the pattern. The root of the tree represents the null sequence. At each node of the tree in

the figure, its pattern and its supporting sequences in D are depicted together with symbol SE or IE on each edge

representing itemset extension or sequence extension respectively.

The key computational step in SLPMiner is that of counting the frequency of the various itemset and sequence

extensions at each node of the tree. In principle, these frequencies can be computed by scanning the original database

for each one of the nodes. However, this is not cost-effective, especially when the support for each of those extensions

is very small. For this reason, SLPMiner creates a projected database for each node of the tree, and uses this projected

database (which is usually much smaller) to determine its frequent extensions. The projecteddatabaseof a sequential

pattern p has only those sequences in D that support p. For example, at the node 〈(2, 3)〉 in Figure 6, its projected

database needs to contain only s1, s2, s4 since s3 does not support this pattern. Furthermore, we can eliminate preceding

items in each sequence that will never be used to extend the current pattern. For example, at the node 〈(2)〉 in Figure 6,
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Figure 6: The prefix tree of a sequential database.

we can store sequence s′
1 = 〈(2, 3)〉 instead of s1 itself in its projected database. Also note that items that do not

contribute to a frequent sequence or itemset extension get pruned from all projected databases under that node of

the tree. Overall, database projection reduces the amount of sequences that need to be processed at each node and

promotes efficient pattern discovery.

6.1.1 Performan ce Optimizations for Disk I/O

While expanding each node of the tree, SLPMiner performs the following two steps. First, it calculates the support of

each item that can be used for itemset extension and each item that can be used for sequence extension by scanning

the projected database D′ once. Second, SLPMiner projects D′ into a projected database for each frequent extension

found in the previous step.

Since we want SLPMiner to be able to run against large input sequential databases, the access to the input database

and all projected databases is disk-based. To facilitate this, SLPMiner uses two kinds of buffers: a read-buffer and a

write-buffer. The read-buffer is used to load a projected database from disk. If the size of a projected database does

not fit in the read-buffer, SLPMiner reads part of the database from disk several times. The write-buffer is used to tem-

porally store several projected databases that are generated at a node by scanning the current projected database once

using the read-buffer. There are two conflicting requirements concerning how many projected databases we should

generate at a time. In order to reduce the number of database scans, we want to generate as many projected databases as

possible in one scan. On the other hand, if we keep small buffers for many projected databases simultaneously within

the write-buffer, it will reduce the size of the buffer assigned to each projected database, leading to expensive frequent

I/O between the write-buffer and disk. In order to balance these two conflicting requirements, SLPMiner calculates

the size of each projected database when calculating the support of every item in the current projected database before

it actually generates new projected databases. Then, SLPMiner performs a number of database scan, and in each scan,

it generates as many projected databases as they can fit in the write-buffer and then writes the entire buffer to the disk.

The number of scans depends on the database size and the size of the write buffer. This method also facilitates storing

each projected database in a contiguous segment on the disk, allowing us to use fast sequential disk operations which

dramatically improve the efficiency of disk I/O.

6.2 Pruning Methods of SLPMiner

In this subsection, we introduce three pruning methods that use the SVE property to substantially reduce the size of

the projected databases and allow SLPMiner to efficiently find all sequential patterns that satisfy a length-decreasing
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support constraint.

6.2.1 Sequence Pruning (SP)

The first pruning method is used to eliminate certain sequences from the projected databases and is analogous to the

transaction pruning method used by LPMiner (Section 5.2.1). Recall from Section 6.1 that SLPMiner generates a

projected database at every node. Let us assume that we have a projected database D′ at a node N that represents a

sequential pattern p. Each sequence in D′ has p as its prefix. If p is infrequent, we know from the SVE property

that in order for this pattern to grow to something indeed frequent, it must have a length of at least f −1(σD(p)). Now

consider a sequence s that is in the projected database at node N, i.e., s ∈ D′. The largest sequential pattern that s can

support is of length |s| + |p|. Now if |s| + |p| < f −1(σD(p)), then s is too short to support any frequent patterns that

have p as prefix. Consequently, s does not need to be considered any further and can be pruned. We will refer to this

pruning method as the sequencepruning method or SPfor short and is formally defined as follows:

Definition 10 (Sequence Pruning) Givena length-decreasing supportconstraint f (l ) anda projecteddatabase

D′ at a noderepresenting asequential pattern p, a sequences ∈ D′ canbeprunedfrom D′ if f (|s|+ |p|) > σD(p).

SLPMiner checks if a sequence needs to be inserted to a projected database just before inserting it onto the write-

buffer. We evaluated the complexity of this method in comparison with the complexity of inserting a sequence to a

projected database. There are three parameters we need to know to prune a sequence: |s|, |p|, and σD(p). As the

length of each sequence is part of the sequence data structure in SLPMiner, it takes a constant time to calculate |s|

and |p|. As for σD(p), we know this value when we generated the projected database for the pattern p. Evaluating

function f takes a constant time because SLPMiner has a lookup table that contains all possible (l , f (l )) pairs. Thus,

the complexity of this method is just a constant time per inserting a sequence.

6.2.2 Item Pruning (IP)

The second pruning method is used to eliminate certain items from each sequence in each projected database. Let us

assume that we have a projected database D′ at a node v that represents sequential pattern p and consider an item i

in a sequence s ∈ D′. From the SVE property we know that the item i will contribute to a valid frequent sequential

pattern only if

|s| + |p| ≥ f −1(σD′(i )), (3)

where σD′(i ) is the support of item i in D′. This is because of the following. The longest sequential pattern that s

can participate in is |s| + |p|, and we know that, in the subtree rooted at v, sequential patterns that extend p with

item i have support at most σD′(i ). Now, from the SVE property, such sequential patterns must have length at least

f −1(σD′(i )) in order to be frequent. As a result, if Equation 3 does not hold, item i can be pruned from the sequence

s. Once item i is pruned, then σD′(i ) and |s| decrease, possibly allowing further pruning. Essentially, this pruning

method eliminates some of the infrequent items from the short sequences. We will refer to this method as the item
pruning method, or IP for short and is formally defined as follows:

Definition 11 (Item Pruning) Givena length-decreasing supportconstraint f (l ) anda projecteddatabaseD′ at

a noderepresenting a sequential pattern p, an item i in a sequences ∈ D′ can be pruned from s if |s| + |p| <

f −1(σD′(i )).

Note that item pruning is similar in nature to the node pruning scheme used by LPMiner (Section 5.2.2). However,

SLPMiner’s version of this pruning method is somewhat less efficient than the corresponding method of LPMiner as

the latter by pruning nodes from the FP-tree it prunes items from multiple transactions.
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Pract ical Considerat ions A simple way to implement this pruning method is as follows: for each projected

database D′, repeat scanning D′ to collect support values of items and scanning D′ again to prune items from each

sequence until no more items can be pruned. After that, we can project the database into a projected database for

each frequent item in the pruned projected database. This algorithm, however, requires multiple scans of the projected

database and hence will be too costly as a pruning method.

Instead, we can scan a projected database once to collect support values and use those support values for pruning

items as well as for projecting each sequence. Notice that we are using approximate support values that might be higher

than the real values since the support values of some items might decrease during the pruning process. SLPMiner

applies IP before generating a projected sequence s′ of s and after generating s′ just before inserting s′ into the write-

buffer. By applying IP before projecting the sequences, we can reduce the computation of sequence projection. By

applying IP once again for the projected sequence s′, we can exploit the reduction of length |s| − |s′| to further prune

items in s′. Pruning items from each sequence is repeated until no more items can be pruned or the sequence becomes

short enough to be pruned by SP.

IP can potentially prune a larger portion of the projected database than SP since it always holds that σD(p) ≥ σD′(i )

and hence f −1(σD(p)) ≤ f −1(σD′(i )). However, the pruning overhead of IP is much larger than that of SP. Given a

sequence s, in the worst case, only one item will be pruned during each iteration over the items in s. Since this can be

repeated as many as the number of items in the sequence, the worst case complexity for one sequence is O(n2) where

n is the number of items in the sequence. In our experimental evaluation (Section 7.2) we will see how this overhead

affects the total runtime of SLPMiner.

6.2.3 Structure-based Pruning

The sequence and item-pruning schemes that we described so far, do not take advantage of the fact that sequences hav-

ing the same overall length, can potentially support disjoint sets of sequential patterns depending on size of the itemsets

that they contain. For example, consider two size-four sequences s1 = 〈(1, 2, 3, 4)〉 and s2 = 〈(1), (2), (3), (4)〉. Even

though both of them support the same size-one sequences 〈(1)〉, 〈(2)〉, 〈(3)〉, and 〈(4)〉 they will never simultaneously

support any sequences whose size is greater or equal to two. For instance sequence 〈(1, 2)〉 will only be supported

by s1 whereas sequence 〈(1), (2)〉 will only be supported by s2. Motivated by this observation, we considered ways

to split a projected database into smaller equivalent classes, such that each class supports a disjoint set of sequential

patterns. The advantage of such an approach is that by having smaller databases we may be able to reduce the depth

of a certain path from the root to a leaf node of the tree.

As a structure-based pruning, we developed the min-max pruning method. Let p be a sequential pattern at a

particular node, D′ be its projected database, and assume that p is infrequent (i.e., σD(p) < f (|p|)). From the SVE

property, in order for p to become frequent, we need to grow p by adding at least f −1(σD(p)) − |p| items. Now,

consider the following two values that are defined for each sequence s ∈ D′.

1. a(s) = the smallest number of itemsets in s that need to be used to grow p by f −1(σD(p)) − |p| items.

2. b(s) = the number of itemsets in s.

These two values define an interval [a(s), b(s)], that we call the min-max interval of sequence s. If two sequences

s, s′ ∈ D′ satisfy [a(s), b(s)] ∩ [a(s′), b(s′)] = ∅, then s and s′ cannot support any common sequential pattern since

their min-max intervals are disjoint. Motivated by this observation, the basic idea of the min-max pruning is to split

the projected database D′ into two databases D′
1 and D′

2 such that they contribute to two disjoint sets of frequent

sequential patterns.

If there exists D′
1 and D′

2 that satisfy ∪s∈D′
1
[a(s), b(s)] ∩ ∪s∈D′

2
[a(s), b(s)] = ∅, then D′

1 and D′
2 support distinct

sets of frequent sequential patterns. However, in general,this is impossible. Instead, D′ will be split into three sets

A, B, C of sequences as shown in Figure 7. More precisely, these three sets are defined for some positive integer k as
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Figure 7: Min-max intervals of a set of sequences.

follows.

A(k) = {s|s ∈ D′ ∧ b(s) < k}

B(k) = {s|s ∈ D′ ∧ a(s) ≥ k}

C(k) = D′ − (A ∪ B)

A(k) and B(k) support distinct sets of frequent sequential patterns, whereas A(k) and C(k) as well as B(k) and C(k)

support overlapping sets of frequent sequential patterns. From these three sets, we form D′
1 = A(k) ∪ C(k) and

D′
2 = B(k) ∪ C(k). If we mine frequent sequential patterns of length up to k − 1 from D′

1 and patterns of length no

less than k from D′
2, we will obtain the same patterns as we would from original D′.

Throughout our experiments, we observed that |C| is usually close to |D′|; thus, mining D′
1 and D′

2 separately will

cost more than mining the original database D′. We can, however, prune the entire D′ if both |D′
1| and |D′

2| are smaller

than minl≥1 f (l ). Furthermore, we can increase this minimum support by the fact that any sequential patterns that the

current pattern p can extend to is of length at most maxs∈D′(|s|) + |p|. Now, from the SVE property, we know that

if both |D′
1| and |D′

2| are smaller than f −1(maxs∈D′(|s|) + |p|)|D|, we can eliminate the entire D′. Essentially, this

means that if we can split a projected database into two subsets each of which is too small to be able to support any

frequent sequential pattern, then we can eliminate the entire original projected database. We will refer to this method

as the min-max pruning method or MP for short and is formally defined as follows:

Definition 12 (Min-Max Pruning) Givena length-decreasing supportconstraint f (l ) and a projected database

D′ at a noderepresenting asequential pattern p, the entire D′ can be pruned if there existsa positive integer k such

that

|D′
1| = |A(k)| + |C(k)| < f (max

s∈D′
(|s|) + |p|)|D| , and

|D′
2| = |B(k)| + |C(k)| < f (max

s∈D′
(|s|) + |p|)|D| .

Pract ical Considerat ions We apply MP just after a new projected database D′ is generated if the entire se-

quences in D′ is still kept in the write-buffer and if |D′| ≤ 1.2 f (maxs∈D′(|s|) + |p|)|D|. The first condition is

necessary to avoid costly disk I/O and the second condition is necessary to increase the probability of successfully

eliminating the projected database.

The algorithm for MP consists of two parts. The first part calculates the distribution of the number of sequences over

possible min-max intervals. The second part finds a positive integer k that satisfies the above two equations. The first

part requires scanning D′ once and finding the min-max interval for each sequence. For each sequence s, SLPMiner

determines a(s) as the smallest number of the largest itemsets whose sizes add up to at least f −1(σD(p)) − |p|. The
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other value b(s) is simply the number of itemsets in s. This part requires O(m) where m is the total number of itemsets

in D′. The second part uses an n×n upper triangular matrix Q = (qi j ) where qi j = |{s|a(s) = i ∧b(s) = j ∧s ∈ D′}|

and n is the maximum number of itemsets in a sequence in D′. Matrix Q is generated during the database scan of the

first part. Given matrix Q, we have

|A(k)| + |C(k)| =

k−1∑

i=1

n∑

j =i

qi j

|B(k)| + |C(k)| =

n∑

j =k

j∑

i=1

qi j

Using the relations

(|A(k + 1)| + |C(k + 1)|) − (|A(k)| + |C(k)|) =

n∑

j =k

qkj

(|B(k + 1)| + |C(k + 1)|) − (|B(k)| + |C(k)|) = −

k∑

i=1

qik

we can calculate |A(k)| + |C(k)| and |B(k)| + |C(k)| incrementally for all k in O(n2). So the overall complexity of

the min-max pruning for one projected database is O(m + n2). In some cases, this complexity may be much larger

than the runtime reduction achieved by eliminating the projected database. However, our experimental results show

that the min-max pruning method alone can substantially reduce the total runtime.

7 Exper imental Evaluation

We experimentally evaluated the performance and effectiveness of the LPMiner and the SLPMiner algorithms for

finding frequent patterns that satisfy a length-decreasing support constraint on a variety of synthetic datasets. These

datasets were generated by the widely used itemset and sequence generators that are provided by the IBM Quest group

and were initially used to evaluate the Apriori [3] and AprioriAll [21] algorithms.

These experiments were performed on two classes of workstations. In particular, the experiments with LPMiner

were performed on Intel-based Linux workstations with Pentium III at 600MHz and 1GB of main memory, whereas

the experiments with SLPMiner were performed on Linux workstations with AMD Athlon at 1.5GHz and 3GB of

main memory. All the reported runtimes are in seconds.

7.1 Experimental Evaluation o f LPMiner

We used two classes of datasets DS1 and DS2. Both of them contained 100K itemsets. For each of the two classes

we generated different problem instances as follows. For DS1, we varied the average size of the itemsets from 10

to 34 in increments of two, obtaining a total of 13 different datasets, DS1-10, DS1-12, · · ·, DS1-34. For DS2, we

varied the average size of the itemsets from 10 to 28 in increments of two, obtaining a total of 10 different datasets,

DS2-10, DS2-12, · · ·, DS2-28. For each problem instance in both of DS1-x and DS2-x, we set the average size of the

potentially maximal long itemset to be x/2, so as x increases, the dataset contains potentially longer frequent itemsets.

The difference between DS1 and DS2 is that each DS1-x dataset contains 1000 distinct items, whereas each DS2-x

dataset contains 5000 distinct items. Consequently, for sufficiently small values of support, the expected number of

frequent itemsets for DS2-x will be greater than that for DS1-x. The characteristics of these datasets are summarized

in Table 1.

In all of our experiments we used minimum support constraints that decrease linearly with the length of the frequent
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Parameter Description DS1 DS2

|D| Number of itemsets 100K 100K

|T | Average size of the itemsets 3 to 34 3 to 28

|I | Average size of the maximal potentially long itemsets |T|/2 |T |/2

|L| Number of maximal potentially large itemsets 10000 10000

N Number of distinct items 1000 5000

Table 1: Parameters of datasets for LPMiner.
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Figure 8: Support curve for DS1-20 and DS2-20.

itemsets. In particular, for each of the DS1-x datasets, the initial value of support was set to 0.005 (representing

a minimum occurrence frequency of 500) and it was decreased linearly down to 0.0001 (representing a minimum

occurrence frequency of 10) for itemsets of length up to x. For longer itemsets the support was kept fixed at 0.0001. In

the case of the DS2 class of datasets, we used a similar approach to generate the constraint; however, instead of using

0.0001 as the minimum support, we used 0.00005 (representing a minimum occurrence frequency of 5). Figure 8

graphically illustrates these two length-decreasing support constraints for DS1-20 and DS2-20.

7.1.1 Results

Table 2 shows the experimental results that we obtained for the DS1 and DS2 datasets. Each row of the table shows

the results obtained for a different DS1-x or DS2-x dataset, specified on the first column. The remaining columns

show the amount of time required by different itemset discovery algorithms. The column labeled “FP-growth” shows

the amount of time taken by the original FP-growth algorithm using a constant support constraint that corresponds to

the smallest support of the support curve, i.e., 0.0001 for DS1, and 0.00005 for DS2. The other columns show the

amount of time required by LPMiner that uses the length-decreasing support constraint and a total of seven different

combinations of pruning methods. For example, the column label “NP” corresponds to the scheme that uses only node

pruning, whereas the column labeled “NP+TP+PP” corresponds to the scheme that uses all the three pruning methods

(i.e., node, transaction, and path pruning). Note that values with a “–” correspond to experiments that were aborted

because they were taking too long time.

A number of observations can be made from the results in these tables. First, either one of the LPMiner methods

performs better than the FP-growth algorithm. In particular, the LPMiner that uses all three pruning methods does

the best, requiring substantially smaller time than the FP-growth algorithm. For DS1, it is about 2.2 times faster for

DS1-10, 8.2 times faster for DS1-20, 33.4 times faster for DS1-30, and 105 times faster for DS1-34. Similar trends

can be observed for DS2, in which the performance of LPMiner is 4.2 times faster for DS2-10, 21.0 times faster for

DS2-20, and 58.5 times faster for DS2-26. Second, the performance gap between FP-growth and LPMiner increases

as the length of the discovered frequent itemset increases (recall that for both DS1-x and DS2-x, the length of the

frequent itemsets tend to increase with x). This is due to the fact that the overall number of patterns that LPMiner can

prune becomes larger, leading to improved relative performance. Third, comparing the different pruning methods in

isolation, we can see that NP and TP lead to the largest runtime reduction and PP achieves the smallest reduction. This
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LPMiner

Dataset FP-growth NP TP PP NP+TP NP+PP TP+PP NP+TP+PP

DS1-10 40.42 21.36 25.03 40.38 18.32 21.29 25.03 18.34

DS1-12 71.09 32.80 35.72 70.92 27.88 32.64 35.59 27.87

DS1-14 130.60 47.86 48.31 125.70 40.55 47.59 48.26 40.38

DS1-16 255.52 67.79 68.52 253.89 56.46 67.16 64.06 60.44

DS1-18 409.96 85.85 80.07 404.51 71.29 84.64 79.17 71.04

DS1-20 730.39 113.98 105.25 711.94 93.82 110.49 101.09 89.35

DS1-22 1224.41 145.25 141.53 1180.97 117.60 137.18 133.18 109.37

DS1-24 1840.37 183.51 191.36 1739.31 142.72 174.06 184.60 134.17

DS1-26 3465.20 287.81 306.50 3134.16 212.42 226.66 259.93 166.95

DS1-28 7512.34 2142.16 1911.44 4646.93 1733.97 300.82 362.57 210.95

DS1-30 8884.68 431.02 534.11 7370.50 338.81 397.33 489.12 266.11

DS1-32 31063.53 11001.17 8289.84 12143.14 7943.06 547.12 676.44 361.11

DS1-34 51420.51 16214.51 10990.93 18027.93 10446.44 751.23 905.89 487.83

DS2-10 146.91 37.37 47.84 147.16 34.55 37.15 47.75 35.10

DS2-12 275.83 47.29 66.48 274.81 43.65 46.97 66.04 43.28

DS2-14 475.75 58.44 90.50 471.67 53.75 56.39 88.98 52.97

DS2-16 812.48 80.11 125.09 798.52 72.07 77.16 122.50 70.39

DS2-18 1280.64 100.25 165.01 1252.84 93.05 91.61 160.60 86.79

DS2-20 2359.50 143.24 223.24 2282.95 125.45 116.60 207.55 112.24

DS2-22 3592.04 229.33 315.03 3388.12 186.41 150.00 267.46 139.40

DS2-24 5137.13 313.26 373.71 4676.63 208.68 186.62 336.51 173.38

DS2-26 12974.80 2297.73 2094.52 10022.34 1884.83 241.35 426.62 221.59

DS2-28 – 8431.51 7149.52 – 6977.56 328.28 551.04 296.88

Table 2: Comparison of pruning methods of LPMiner using DS1 and DS2.

is not surprising as PP can only prune itemsets during the late stages of itemset generation. Finally, the runtime with

three pruning methods increases gradually as the average length of the itemsets (and the discovered itemset patterns)

increases, whereas the runtime of the original FP-growth algorithm increases exponentially.

To evaluate how the performance of LPMiner scales with the size of the database we performed an experiment

in which we varied the number of itemsets from 50K to 200K for the DS1-26 and DS2-26 datasets. The amount of

time required by LPMiner on these datasets is shown in Figure 9. From these results we can see that LPMiner scales

sub-linearly with the size of the database. For instance, for DS1-26, the runtime increases by a factor of 3.15 when the

database increases by a factor of 4. The reason for that is that FP-tree is able to achieve a somewhat higher compression

rate; thus, speeding up the overall computations. Note that the small variability in the performance obtained for DS2-

26 as we increase the number of itemsets is due to the fact that the number of frequent patterns discovered in each

distance was somewhat different.
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Figure 9: Runtime performance of LPMiner as the number of transactions increases from 50K to 200K.
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7.2 Experimental Evaluation o f SLPMiner

We primarily used two classes of datasets DS3 and DS4, each of which contained 25K sequences. For each of the two

classes we generated different problem instances as follows. For DS3 we varied the average number of itemsets in a

sequence from 10 to 30 in increments of two, obtaining a total of 11 different datasets, DS3-10, DS3-12, · · ·, DS3-30.

For DS4 we varied the average number of items in an itemset from 2.5 to 7.0 in increments of 0.5, obtaining a total

of 10 different datasets, DS4-2.5, DS4-3.0, · · ·, DS4-7.0. For DS3-x we set the average size of maximal potentially

frequent sequences to be x/2. For DS4-x we set the average size of maximal potentially frequent itemsets to be x/2.

Thus, the dataset contains longer frequent patterns as x increases. The characteristics of these datasets are summarized

in Table 3.

Parameter Description DS3 DS4

|D| Number of sequences 25000 25000

|C| Average number of itemsets per sequence x = 10, 12, · · · , 30 10

|T| Average number of items per itemset 2.5 x = 2.5, 3.0, · · · , 7.0

N Number of items 10000 10000

|S| Average size of maximal potentially frequent sequences x/2 5

|I | Average size of maximal potentially frequent itemsets 1.25 x/2

Table 3: Parameters for datasets for SLPMiner.

In addition to the above datasets, we also performed a limited number of experiments with another dataset DS5, for

which the parameters were set as follows: |D| = 25000, |C| = 20, |T | = 10, N = 10000, |S| = 10, and |I | = 5. This

dataset contains much longer sequences than DS3 and DS4 and was used to evaluate the overheads associated with the

various pruning methods.

In all of our experiments, we used a minimum support constraint that decreases linearly with the length of the fre-

quent sequential pattern. In particular, the initial value of support was set to 0.01 (representing a minimum occurrence

frequency of 25) and it was decreased linearly down to 0.001 (representing a minimum occurrence frequency of 3) for

sequences of up to length ⌊|C||T |/2⌋. For longer sequences, the support was kept fixed at 0.001. Note that |C||T |

represents the average size of each sequence.

We also ran SPADE [25] to compare runtime values with SLPMiner. When running SPADE, we used the depth

first search option, which leads to better performance than the breadth first search option on our datasets. We set

the minimum support value to be equal to 0.0001 (i.e., the smallest support value of the length-decreasing support

constraint curve).

For SLPMiner, we set the size of the read-buffer to 10MB and the write-buffer to 300MB. Similarly, we set the

available memory size to 310MB for SPADE.

7.2.1 Results

Table 4 shows the experimental results that we obtained for the DS3 and DS4 datasets. Each row of the table shows the

results obtained for a different DS3-x or DS4-x dataset, specified on the first column. The column labeled “SPADE”

shows the amount of time taken by SPADE. The column labeled “None” shows the amount of time taken by SLPMiner

using a constant support constraint that corresponds to the smallest support of the support curve, that is 0.0001 for

all datasets. The other columns show the amount of time required by SLPMiner that uses the length-decreasing

support constraint and a total of five different combinations of pruning methods. For example, the column label

“SP” corresponds to the pruning scheme that uses only sequence pruning, whereas the column labeled “SP+IP+MP”

corresponds to the scheme that uses the sequence, the item, and the min-max pruning methods. Note that values with

a “–” correspond to experiments that were aborted because they were taking too long time.

A number of interesting observations can be made from the results in these tables. First, even though SLPMiner
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SLPMiner

Dataset SPADE None SP IP MP SP+IP SP+IP+MP

DS3-10 10.56 20.21 11.51 11.57 12.64 12.00 11.83

DS3-12 18.24 41.42 15.31 15.43 17.80 15.35 15.93

DS3-14 46.21 98.35 21.29 21.58 24.45 21.42 21.29

DS3-16 87.28 208.18 27.34 26.63 31.23 26.18 27.38

DS3-18 273.32 592.88 39.22 39.03 43.49 38.79 40.17

DS3-20 594.77 1438.93 46.14 48.44 54.72 47.86 47.72

DS3-22 4702.69 8942.94 63.35 65.12 74.90 65.23 65.90

DS3-24 – – 82.75 85.62 94.64 82.37 83.14

DS3-26 – – 106.98 112.18 126.64 111.69 106.56

DS3-28 – – 139.36 142.76 162.06 137.95 138.41

DS3-30 – – 180.71 189.02 212.84 185.60 184.10

DS4-2.5 10.56 20.21 11.51 11.57 12.64 12.00 11.83

DS4-3.0 21.15 45.88 16.62 16.94 18.71 15.87 15.90

DS4-3.5 117.48 279.61 31.85 35.31 43.26 31.44 31.69

DS4-4.0 333.78 899.02 32.78 32.48 39.80 31.94 32.10

DS4-4.5 731.40 1784.57 35.87 37.95 43.13 38.03 36.53

DS4-5.0 6460.64 17106.37 57.67 61.65 77.83 59.11 59.09

DS4-5.5 – – 59.50 62.61 73.75 61.18 61.79

DS4-6.0 – – 77.75 78.68 96.95 77.92 75.18

DS4-6.5 – – 98.06 105.47 144.38 101.21 102.18

DS4-7.0 – – 116.98 119.90 136.51 113.44 117.60

Table 4: Comparison of pruning methods of SLPMiner using DS3 and DS4.

without any pruning method is slower than SPADE, the relative performance difference remains stable ranging from

1.9 to 2.7 with an average value of 2.3. This shows that the performance of SLPMiner is comparable to SPADE and

a reasonably good platform for evaluating our pruning methods. Second, either one of pruning methods performs

better than SLPMiner without any pruning method. In particular, SP, IP, SP+IP, and SP+IP+MP have almost the same

speedup. For DS3, the speedup by SP is about 1.8 times faster for DS3-10, 7.6 times faster for DS3-16, and 141.2

times faster for DS3-22. Similar trends can be observed for DS4, in which the performance of SLPMiner with SP is

1.8 times faster for DS4-2.5, 8.8 times faster for DS4-3.5, and 296.6 times faster for DS4-5.0.

Third, comparing the different pruning methods in isolation, we can see that SP leads to the largest runtime re-

duction, IP leads to the second largest runtime reduction, and MP achieves the smallest reduction. The reason for

this somewhat worse performance of MP is primarily due to the overhead of splitting a database into two subsets.

Despite that, it seems surprising to gain such a great speedup by MP alone. This shows a large part of the runtime of

SLPMiner without any pruning method is accounted for by many small projected databases that never contribute to

any frequent patterns. As for SP and IP, SP is slightly better than IP because IP and SP prune almost the same amount

of projected databases for those datasets but IP has much larger overhead than SP. Fourth, the runtime with the three

pruning methods increases gradually as the average length of the sequences (and the discovered patterns) increases,

whereas the runtime of SLPMiner without any pruning increases exponentially.

SP IP SP+IP SP+IP+MP

Runtime 15939.38 16019.34 15103.93 15205.96

Projected Database Size (GB) 65.99 47.50 43.20 41.35

Table 5: Comparison of pruning methods of SLPMiner using DS5.

Table 5 shows the runtime and projected database size for the DS5 dataset. We tested SP, IP, SP+IP, SP+IP+MP for

DS5 since they were the best when applied to DS3 and DS4 datasets. Even though the projected database size of IP is

1.5 times smaller than that of SP, SP and IP achieve almost the same runtime again because of the large overhead of

IP. These two methods, however, can achieve the best runtime when combined as SP+IP because IP does not have to
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Scalability of SLPMiner
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Figure 10: Runtime performance of SLPMiner as the number of transactions increases from 25K to 100K.

prune the part of projected databases for which SP can prune. Since DS5 contains much longer sequences than DS3

and DS4 datasets, there are more opportunities for IP to prune where SP does not work.

Finally, to evaluate how the performance of SLPMiner scales with the size of the database we performed an ex-

periment in which we varied the number of sequences from 25K to 100K for the DS3-26 and DS4-7.0 datasets. The

amount of time required by SLPMiner on these datasets is shown in Figure 10. Specifically, Figure 10 shows two

sets of results. The first set was obtained using a 300MB buffer of disk I/O operations, whereas the second set was

obtained using a 600MB buffer. From these results we can see that SLPMiner scales somewhat worse than linearly

with the size of the database. For instance, for “DS3-26 (300MB)”, the runtime increases by a factor of 7.85 when the

database increases by a factor of 4, whereas in the case of “DS3-26 (600MB)”, the corresponding runtime increases

by a factor of 6.32. These results suggest that the reason for the worse than linear performance is due to the fact that

we are using a fixed-size buffer for disk I/O operations. As the database increases, this buffer is not sufficient to store

the databases (as they are being projected), leading to multiple passes and somewhat lower performance.

8 Conc lusion

In this paper, we presented two algorithms, LPMiner and SLPMiner, that can efficiently find all frequent itemset or

sequential patterns that satisfy a length-decreasing support constraint. For each of these two algorithms, we developed

three pruning methods that improved the performance by up to two orders of magnitude. The key insight that allowed

us to achieve such high performance was the introduction of length-decreasing support constraints and the smallest

valid extension property that frequent patterns must have in order to satisfy such support constraints.

The pruning methods are not specific to these two algorithms but almost all of them can be incorporated into other

algorithms for itemset or sequential pattern discovery. For example, the tree-projection algorithm [1] can use the

transaction pruning and item pruning in a straight forward way since the basic approach of this algorithm is very close

to that of FP-growth [8] except that FP-growth uses the FP-tree data structure. It is straight-forward to implement

all the three pruning methods of SLPMiner in PrefixSpan [18] with disk-based projection. PrefixSpan with pseudo-

projection can use the sequence pruning method. Even SPADE [25], which has no explicit sequence representation

during pattern mining, can use the sequence pruning method by adding the length of a sequence to each record in the

vertical database representation.
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